Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Anthony Linden, ${ }^{\text {a* }}$ Mirari Ayerbe, ${ }^{\text {b }}$ Ana Arrieta, ${ }^{\text {b }}$ Aizpea Zubia, ${ }^{\text {b }}$ Silvia Vivanco, ${ }^{\text {b }}$ Edurne Erquicia, ${ }^{\text {b }}$ Eneko Aldaba, ${ }^{\text {b }}$ Fernando P. Cossío ${ }^{\text {b }}+$ and Begoña Lecea ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, ${ }^{\mathbf{b}}$ Kimika Fakultatea, Euskal Herriko Unibertsitatea, PK 1072, E-20080 San Sebastián-Donostia, Spain, and ${ }^{\mathrm{C}}$ Farmazi Fakultatea, Euskal Herriko Unibertsitatea, PK 450, E-01080 Vitoria-Gasteiz, Spain
\dagger Additional correspondence author, email: qopcomof@sq.ehu.es.

Correspondence e-mail: alinden@oci.unizh.ch

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.142$
Data-to-parameter ratio $=17.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

($2 S^{*}, 3 R^{*}, 4 S^{*}, 5 R^{*}$)-3-(S^{*}-1-Benzyloxyethyl)-4-methyl-4-nitro-5-phenylproline methyl ester

At 173 K , the five-membered ring of the title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$, has an envelope conformation. The amine group is involved in both intramolecular and intermolecular hydrogen bonds, the latter linking the molecules into centrosymmetric dimers.

Comment

The title compound, $(3 c)$, is one of three diastereoisomeric products, $(3 a-c)$, obtained from the [3+2]-cycloaddition of the chiral nitroalkene (1) with the silver azomethine ylide derived from imine (2) (Ayerbe et al., 1998). Diastereoisomer (3a) could not be isolated; its absolute configuration was assumed by analogy with the compounds obtained in our previous work (Ayerbe et al., 1998). Compound (3b) did not give crystals that were suitable for X-ray diffraction. Its relative configuration was determined by NOE experiments. The minor diastereoisomer (3c) was successfully crystallized from ethanol and fully characterized.

The puckering parameters (Cremer \& Pople, 1975) for the five-membered ring are: $q_{2}=0.463$ (2) \AA and $\varphi_{2}=321.4$ (2) ${ }^{\circ}$. The latter parameter is close to a value (324°) that is appropriate for an envelope conformation. The envelope flap is formed by C5, which lies 0.699 (3) \AA from the plane defined by atoms $\mathrm{N} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4 . This puckering causes significant contraction of the $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$ angle (Table 1).

The amine group of the molecule forms long, weak bifurcated hydrogen bonds with the carbonyl-O atom of the ester substituent (Table 2). One interaction is intramolecular and completes a closed five-membered loop with a graph-set motif of $S(5)$ (Bernstein et al., 1995). The second is an intermolecular interaction with a neighbouring molecule, which is related to the original molecule by a centre of inversion. The intermolecular interactions thus link the molecules into hydrogen-bonded dimers which have a graph-set motif of $R_{2}^{2}(10)$.

Experimental

The title compound was prepared according to the procedure of Ayerbe et al. (1998). The reaction gave a mixture of three diastereoisomers, $(3 a-c)$, in the proportions 59:29:12, which were separated

Received 23 October 2001
Accepted 24 October 2001
Online 27 October 2001

Figure 1
View of the molecule of (ic) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
by flash chromatography (ethyl acetate/hexane, $1: 10$). Suitable crystall were obtained by evaporation of an ethanol solution (m.p. 454455 K). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): $3328,1722,1535$, 1381; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, δ, p.p.m.): 7.31-7.14 ($m, 10 \mathrm{H}$), $4.96\left(s_{b}, 1 \mathrm{H}\right)$, $4.59(d, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.33(d, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 3.81(s, 3 \mathrm{H}), 3.71$ $(m, 3 \mathrm{H}), 2.52(s, 1 \mathrm{H}), 1.30(d, 3 \mathrm{H}, J=5.3 \mathrm{~Hz}), 1.26(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, δ, p.p.m.): $174.8,137.6,135.7,128.6,128.3,128.2,127.6$, $127.5,127.1,112.3,94.6,73.7,70.6,70.1,58.3,57.0,52.7,17.0,13.7$; analysis, calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 66.30, H 6.59, N 7.03%; found: C 65.99, H 6.56, N 7.08\%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=398.45$
Monoclinic, $P 2_{1} / n$
$a=9.245(2) \AA$
$b=8.4082(17) \AA$
$c=26.6330(15) \AA$
$\beta=94.802(11)^{\circ} \AA^{\circ}$
$V=2063.1(6) \AA^{3}$
$Z=4$

$$
D_{x}=1.283 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=17.0-19.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173$ (1) K
Prism, colourless
$0.50 \times 0.32 \times 0.22 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer ω scans
Absorption correction: none 5348 measured reflections 4719 independent reflections 2920 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Figure 2
The molecular packing of (3c) viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity. Red lines indicate the hydrogen bonding interactions.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$

$$
S=1.06
$$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0528 P)^{2}\right. \\
&+0.4415 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.27 \AA^{-3}
\end{aligned}
$$

4719 reflections
269 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 5$	$1.458(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.563(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.459(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.549(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.513(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.550(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$107.02(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$101.94(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.08(16)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$99.45(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$103.10(15)$		
			$46.76(17)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-29.00(19)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-45.43(17)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.20(18)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$28.37(18)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 6$	$0.91(2)$	$2.46(2)$	$2.778(2)$	$101.1(16)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots 6^{\mathrm{i}}$	$0.91(2)$	$2.39(2)$	$3.278(2)$	$164(2)$

Symmetry code: (i) $2-x, 1-y,-z$.

All H atoms were initially located in a difference Fourier map. The methyl-H atoms were then constrained to an ideal
geometry with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The position of the amine- H atom was refined freely along with an isotropic displacement parameter. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for
publication: SHELXL97 and PLATON (Spek, 2001).

References

Ayerbe, M., Arrieta, A., Cossío, F. P. \& Linden, A. (1998). J. Org. Chem. 63, 1795-1805.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009
New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

